hiltsoc.blogg.se

Transcriptic robotize
Transcriptic robotize








transcriptic robotize

Print('Number of statements: ', statement_count) # return a.getLevel()._cmp_(b.getLevel())

transcriptic robotize

Pairs_sequences.append(pair_sequences.subSequence(first+n, pair_sequences.getLength() - first - n)) Pairs_sequences.append(pair_sequences.subSequence(0, first-1)) New_pairs_sequences = all_pairsubsequences_size_n_threshold(n)įor (candidate_sequence, first) in new_pairs_sequences:ĭistance = candidate_sequence.calcDistance() Size = new_pair_sequences.getMaxCoveredLineNumbersCount() New_pair_sequences = pair_sequences.subSequence(first, n) Return ) for (s1,s2) in suffix_tree_instance.getBestMaxSubstrings(arguments.size_threshold, f, f_elem)]ĭef all_pairsubsequences_size_n_threshold(n):įor first in range(0, pair_sequences.getLength()-n+1): Suffix_tree_instance = suffix_tree.SuffixTree(fcode) Return StatementSequence(x).getCoveredLineNumbersCount() Print('consists of many similar statements.') Print('Warning: sequence of statements starting at %s:%d'%(first_statement.getSourceFile().getFileName(), min(first_statement.getCoveredLineNumbers()))) # assert(new_u.getSubstitutions().getSize() = 0)įor i in range(first_statement_index, i):įirst_statement = sequence New_u = Unifier(cluster.getUnifierTree(), statement) # therefore it will work correct even if unifiers are smaller than hashing depth value # clusters_map contain hash values for statements, not unifiers If bestcluster = None or mincost > arguments.clustering_threshold:ĭef clusterize(hash_to_statement, clusters_map): Print('%d,' %(processed_statements_count,), end=' ') If verbose and ((processed_statements_count % 1000) = 0): H = statement.getDCupHash(arguments.hashing_depth) Use -force to override this restriction.')ĭef build_hash_to_statement(dcup_hash = True):įor statement_sequence in statement_sequences: Print('It starts at %s:%d.'%(first_statement.getSourceFile().getFileName(), min(first_statement.getCoveredLineNumbers()))) Print('Warning: sequences of statements, consists of %d elements is too long.' %(len(sequence),)) Sequences_without_restriction = statement_sequencesįor sequence in sequences_without_restriction: Print('maximum sequence length: %d' % (max_seq_length,)) Print('average sequence length: %f' % (avg_seq_length,)) Print('Input is empty or the size of the input is below the size threshold')Īvg_seq_length = old_div(sum(sequences_lengths),float(n_sequences)) Sequences = source_file.getTree().getAllStatementSequences() Robotnik/Dr.Source File: clone_detection_algorithm.py def findDuplicateCode(source_files, report): Arkeyans ( Skylanders) via Iron Fist of Arkus.Black Cross Army ( Himitsu Sentai Goranger).Ivo Robotnik ( Archie's Sonic the Hedgehog) The Destructinator ( The Fairly OddParents).NOS-4-A2 ( Buzz Lightyear of Star Command) while being under a radiation of Canis Lunis's moon.Males of Cosmo's species/Metarex commanders ( Sonic X).Reverting a converted target may be impossible, temporary or potentially fatal.Transformation may be extremely painful and even traumatic.

Transcriptic robotize free#

Targets may retain free will, depending on circumstances.They can roboticize anything they desire, converting their flesh and bone into circuitry and programming code, and in many cases of doing so, utterly destroying any free will the victim once had. The user has the ability to convert any biological or elemental matter with a free will into a mindless robot or machines. Mechanical Transformation/Transmutation.










Transcriptic robotize